The sutures accelerate wound healing and tissue regeneration through drug-eluting sutures and the echanical properties of this novel suture are not compromised by the modification

About

Summary Younan Xia, Jianhua Li, and Stavros Thomopoulos from the School of Biomedical Engineering at Georgia Tech have developed a simple and versatile method for creating highly porous sutures which aim to accelerate the healing process of an injury site. These sutures are modified to contain an interconnected network of pores, serving to increase the volume of drug loading and allowing for the sustained release of the drug into the affected area. Compared to unmodified suture implants, the porous sutures have the same mechanical properties, but with enhanced drug loading capacity and a sustained release profile of the loaded drug. The modification process of the sutures is simple and conducted in liquid phase at room temperature with low-cost reagents, allowing for easy scale-up in commercial production. The porous sutures not only release drugs for anti-inflammatory, anti-microbial, and pain management purposes, but other bio-factors, such as growth factors, adhesives, extracellular matrix components, and cytokines, can be released to facilitate efficient tissue restoration and would healing. This novel invention also has great potential for the repair of load-bearing connective tissues, such as tendons, and can be readily extended to other applications for wound closure and long-term pain relief post-surgery.    

Register for free for full unlimited access to all innovation profiles on LEO

  • Discover articles from some of the world’s brightest minds, or share your thoughts and add one yourself
  • Connect with like-minded individuals and forge valuable relationships and collaboration partners
  • Innovate together, promote your expertise, or showcase your innovations