Low-cost method for fabricating precious metal catalysts that exhibit both high catalytic activity and excellent thermal stability
About
Researchers at the University of Central Florida have developed a novel universal technique for fabricating precious metal catalysts that exhibit both high catalytic activity and excellent thermal stability. UCF’s Reverse Loading and Metal Shuttling Strategy offers a low-cost solution to traditional fabrication methods, such as those that require complex preparation procedures or are limited to a strong match between the metals and specific supports. The new technique may enable manufacturers to meet more stringent vehicle emission standards in the future. For example, the technology could be used to achieve more than 90 percent catalytic conversion at temperatures below 150 C in the removal of pollutants like carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxide (NO). This method for fabricating precious metal catalysts uses a novel reverse loading and metal shuttling technique that prevents the metals from sintering at high temperatures while maintaining excellent low-temperature activity. The precious metal can include platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), gold (Au) or a precious metal alloy. In one example, aninverse loading process encapsulates precious metals between reducible metal oxides and irreducible metal oxides. A calcination process applied to the sandwich-like catalyst structure shuttles the precious metals to the surface of the reducible metal oxides. The resulting precious metal catalytic structure exhibits unique catalytically active sites, high thermal stability, and excellent low-temperature catalytic activity (for example, catalytic activity at temperatures at or below approximately 150 C which help extend the life of exhaust system).
Key Benefits
• Low cost, facile preparation procedures • Enables high thermal stability and excellent low-temperature catalytic activity • Works universally with precious metals or metal oxide supports • Can be implemented for large-scale industrial applications
Applications
• Chemical refinery • Catalyst supply • Automotive manufacturing