Nanobubble-enriched water has been proven to improve water quality, promote root development, and foster plant health. l

About

Nanobubbles are an innovative, sustainable irrigation and greenhouse technology fueling healthier plant growth through unparalleled oxygenation, pathogen control, and improved root development. Nanobubbles are 70-120 nanometers in size, 2500 times smaller than a single grain of salt. They can be formed using any gas and injected into any liquid. Due to their size, nanobubbles exhibit unique properties that improve numerous physical, chemical, and biological processes. Due to their size and structure, nanobubbles possess distinct properties that make them particularly effective at improving water quality, enhancing water treatment processes, and improving productivity in industrial and agricultural applications.

Key Benefits

Nanobubbles behave differently from larger bubbles because they’re nanoscopic. All of their beneficial attributes — stability, surface charge, neutral buoyancy, oxidation, etc. — are the result of their size. These unique features enable nanobubbles to participate in physical, biological, and chemical reactions while also providing the most efficient gas transfer. Our efforts to advance the science of nanobubbles and push the industry are supported by an array of partners, including acclaimed universities and research institutes. This ensures our products are tested by third-party experts to validate the efficacy of nanobubbles: UCLA professor and aeration expert Michael Stenstrom reports, "Moleaer's nanobubble generators provide the highest oxygen transfer efficiency of any aeration technology I have tested." ASU confirmed the oxidative properties of Moleaer nanobubbles and the formation of hydroxyl radicals in their study. Virginia Tech proved that Moleaer’s nanobubbles eliminate pathogens like E. Coli and Listeria on surfaces within five minutes of exposure. Further, the size and concentration of Moleaer’s nanobubbles have been validated by multiple independent researchers using Nanoparticle Tracking Analysis (NTA) —

Applications

- irrigation in high value crops in horticulture: berries and vegetables. - irrigaiton in high value crops in agriculture: cherries, avocados, nuts, etc.

Register for free for full unlimited access to all innovation profiles on LEO

  • Discover articles from some of the world’s brightest minds, or share your thoughts and add one yourself
  • Connect with like-minded individuals and forge valuable relationships and collaboration partners
  • Innovate together, promote your expertise, or showcase your innovations