Reduces variable inductance that affects the timing or amplitude of the pulses.
About
Background Welding systems support a variety of processes, such as metal inert gas (MIG) welding, tungsten inert gas (TIG) welding, stick welding, and so forth, which may operate in different modes, such as constant current or constant voltage. Certain welding applications, such as boiler servicing and repair, shipyard work, construction, and so forth, may position a welding location or workpiece large distances from a welding power source. Power cables supply output power to a welding application from the welding power source. Advanced forms of MIG welding are based upon generation of pulsed power to deposit welding wire on the workpiece. Unfortunately, lengthy power cables between a welding power source and a welding application introduce variable inductance that affects the timing or amplitude of the pulses. Technology A welding wire feeder includes a welding wire feed drive configured to drive welding wire towards a welding application and wire feed control circuitry coupled to the welding wire feed drive. The wire feed control circuitry is also configured to control the drive of welding wire towards the welding application. The welding wire feeder also includes power conversion circuitry and welding process control circuitry coupled to the power conversion circuitry. The power conversion circuitry is configured to receive input power from a welding power source and to convert the input power to controlled waveform welding output. The welding process control circuitry is configured to provide control signals for conversion of the input power to the controlled waveform welding output. The welding wire feeder also includes a process operator interface coupled to the welding process control circuitry and configured to permit operator selection of a controlled waveform welding process.