This invention relates generally to a microcantilever having a temperature compensating piezoresistive strain sensor and integrated heater-thermometer.

About

Background: This invention is in the field of atomic force microscopes and micro-cantilevers. This invention relates generally to a microcantilever having a temperature compensating piezoresistive strain sensor and integrated heater-thermometer. This invention also relates to methods of using such a cantilever in the fields of thermodynamic measurements and chemical/biochemical sensing. Microcantilevers having both resistive heaters and piezoresistors can offer simultaneous heating and deflection sensing. These hybrid types have been used as multi-functional scanning probes in thermomechanical data storage. Similarly, microcantilevers with the ability of independent heating and sensing operation that have high sensitivity to surface stress could be used for a variety of sensor applications. One example would be calorimetry of a material adhered to the cantilever surface. Chemical processes such as melting and evaporation and chemical reactions between substances could be triggered by the heaters while the changes in the surface stresses on the cantilever are monitored and can give information about the material or reaction properties. Other examples include biochemical sensing, where one might wish to interrogate the temperature-dependence of biochemical binding to a microcantilever.

Register for free for full unlimited access to all innovation profiles on LEO

  • Discover articles from some of the world’s brightest minds, or share your thoughts and add one yourself
  • Connect with like-minded individuals and forge valuable relationships and collaboration partners
  • Innovate together, promote your expertise, or showcase your innovations