Improves the efficiency and reduces the cost for producing water-soluble sugar oligomers and lignocellulos

About

Technology Selective hydrolysis of crystalline cellulose into glucose is an important chemical reaction for the production of renewable biofuels and platform chemicals from lignocellulosic biomass. However, hydrolysis of cellulose remains a processing challenge. The current methods are not economically feasible compared to petroleum and the enzymatic catalytic pathway utilizes toxic and corrosive acids. In contrast, this novel invention overcomes these limits via a two-step process for the hydrolysis of crystalline cellulose to increase the efficiency of the acid catalyzed hydrolysis reaction. This prevents re-lamination of the glucan chains thus allowing for a rapid production of water-soluble sugar oligomers. A carbon-based catalyst can then rapidly hydrolyze the water-soluble glucan oligomers to 91.2% glucose yield faster than conventional approaches due to enhanced adsorption of glucan oligomers on the carbon surface. Applications This novel method can be employed to generate alkylated cellulose e.g. methylcelluloses and ethylcelluloses. In addition, the process produces value added platform chemicals with high selectivity that can be utilized to manufacture aromatics and daily used plastics.  

Register for free for full unlimited access to all innovation profiles on LEO

  • Discover articles from some of the world’s brightest minds, or share your thoughts and add one yourself
  • Connect with like-minded individuals and forge valuable relationships and collaboration partners
  • Innovate together, promote your expertise, or showcase your innovations