This research is important for biomedical applications such as implants, stents, and other devices surgically implanted in humans.

About

Description The proposed invention is capable of producing linear lipid multilayer nanostructures along the edge of a stencil. The thickness of these lipid films is controlled that results in controlling dosage of material that is taken up by cells cultured over these areas. Unlike other migration assays, this approach makes it possible to screen different compounds and dosages on the same surface, with scalability for high throughput screening microarrays to assay for cell migration. Additionally, the drug or small molecules encapsulated will only be delivered to cells at the edge of the stencil because of the precipitation properties which can be important to selectively affect the migrating cells at the edge from non-migratory cells. This invention utilizes lipids as the bio compatible patterning materials, which have been used previously to create surface supported monolayers mainly to detect functionality in reconstituted proteins and to measure membrane diffusion.  Creating bio-compatible films with defined features is important for materials research as these patterned surfaces can give rise to cellular responses such as differentiation, migration, alignment, and other cellular mechanisms. This research is important for biomedical applications such as implants, stents, and other devices surgically implanted in humans.  

Register for free for full unlimited access to all innovation profiles on LEO

  • Discover articles from some of the world’s brightest minds, or share your thoughts and add one yourself
  • Connect with like-minded individuals and forge valuable relationships and collaboration partners
  • Innovate together, promote your expertise, or showcase your innovations