New compositions and methods for preventing browning and microbial growth in food products with low cost and high effectiveness.

About

Antibrowning Compositions Abstract Antibrowning compositions for food products, for example fresh produce, are disclosed herein. These antibrowning compositions can also, for example, be used to prevent growth of bacteria, yeasts and molds in the food products. Methods for using the antibrowning compositions are also disclosed herein. Background 1. Field of the Invention The present disclosure is related to antibrowning compositions for food products, for example fresh produce, and methods for using the same. In some instances, the antibrowning compositions can also prevent growth of bacteria, yeasts, and/or molds on food products. 2. Description of the Related Art Appearance has been shown to have a major effect on a consumer's decision to purchase foods, such as fresh-cut fruit and vegetable products. Enzymatic browning is one of the major problems affecting the aesthetic quality of fresh fruits and vegetables. The change in color during browning is due to the oxidative reactions of phenolic compounds by polyphenol oxidase and the reaction products, o-quinones, to various polymerized products. Browning not only affects color, but can also adversely affect flavor and nutritional value Enzymatic browning can be inhibited by chemical inhibiting agents, but the use of browning inhibitors in food is limited by considerations relevant to toxicity, wholesomeness, and their effect on taste, texture, and cost. Browning inhibitors have been classified by their primary mode of action as: (1) reducing agents; (2) acidulants; (3) chelating agents; (4) complexing agents; (5) enzyme inhibitors; and (6) enzyme treatments. Sulphites, considered as reducing agents, were the most widely used, but are now subject to regulatory restrictions because of potential adverse health effects. Currently, some antibrowning methods provide favorable results to reduce browning of food products; however, they are expensive to use and do not provide effective inhibition of microbial growth. There is a need for new compositions and methods for preventing browning and microbial growth in food products with low cost and high effectiveness. Summary Some embodiments provided herein provide an antibrowning composition comprising calcium ascorbate, calcium propionate, and calcium chloride. In some embodiments, the weight ratio of calcium ascorbate, calcium propionate, and calcium chloride is about (3-25):(0.25-2):(0.2-0.3). In some embodiments, calcium ascorbate is present in the amount of about 80.7% by weight, calcium propionate is present in the amount of 16.1% by weight, and calcium chloride is present in the amount of about 3.2% by weight, based on the total weight of the composition. In some embodiments, the composition is aqueous. In some embodiments, calcium ascorbate is present in the aqueous composition in the amount no more than about 25% (weight/volume). In some embodiments, calcium ascorbate is present in the aqueous composition in the amount from about 3% (weight/volume) to about 25% (weight/volume). In some embodiments, calcium propionate is present in the aqueous composition in the amount from about 0.25% (weight/volume) to about 2% (weight/volume). In some embodiments, calcium chloride is present in the aqueous composition in the amount from about 0.2% (weight/volume) to about 0.3% (weight/volume). In some embodiments, calcium ascorbate is present in the aqueous composition in the amount of about 5% (weight/volume), calcium propionate is present in the aqueous composition in the amount of about 1% (weight/volume), and calcium chloride is present in the aqueous composition in the amount of about 0.2% (weight/volume). In some embodiments, the composition has a pH value of about 6 to about 7.5. In some embodiments, the composition disclosed herein further comprises one or more additional enzymatic browning inhibitors selected from the group consisting of sulfites, ascorbic acid, erythorbic acid, cysteine, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiarybutyl hydroxyquinone (TBHQ), propyl gallate (PG), tocopherols, flavonoid compounds, cinnamic acid derivatives, coumarins, citric acid, malic acid, phosphoric acids, sorbic acid, tartaric acid, oxalic acid, succinic acids, ATP, pyrophosphates, porphyrins, EDTA, aromatic carboxylic acids, substituted resorcinols, halide salts, honey, and amino acids. Some embodiments disclosed herein provide a method for inhibiting browning of food, comprising: contacting a food product with an antibrowning composition in an amount sufficient to inhibit enzyme browning, wherein the antibrowning composition comprises calcium ascorbate, calcium propionate, and calcium chloride. In some embodiments, contacting the food product with the antibrowning composition comprises spraying, dusting or dipping the antibrowning composition onto the food product, or merging the food product into the antibrowning composition. In some embodiments, contacting the food product with the antibrowning composition comprises dissolving the antibrowning composition in the food product. In some embodiments, the food product is selected from the group consisting of fruits, vegetables, tubers, seafood, beverage, and a combination thereof. In some embodiments, the food product comprises an uncut vegetable or fruit, a freshly cut, ground, grated, pulped or otherwise processed vegetable or fruit. In some embodiments, the food product is uncut or freshly cut apple, lettuce, blueberry, or artichoke. In some embodiments, the antibrowning composition is effective in reducing browning on the food product by at least about two folds for at least about 21 days as compared to the food product untreated with the antibrowning composition. In some embodiments, the antibrowning composition is effective in reducing bacterial growth on the food product by at least about 90% for at least about 21 days as compared to the food product untreated with the antibrowning composition. Some embodiments disclosed herein provide a food product, comprising: at least one food product; and at least an antibrowning composition in an amount sufficient to inhibit enzymatic browning of the food product, wherein the antibrowning composition comprises calcium ascorbate, calcium propionate, and calcium chloride. Some embodiments provide a method of promoting or extending freshness in a food product comprising: administering an effective amount of a composition comprising calcium ascorbate, calcium propionate, and calcium chloride to the food product, wherein the administration of said composition prohibits or reduces the growth of microbes in the food product. In some embodiments, administering the composition to the food product comprises spraying, dusting or dipping the composition onto the food product, or merging the food product into the composition. In some embodiments, said effective amount is a synergistically effective amount, wherein the weight ratio of calcium ascorbate, calcium propionate, and calcium chloride in the composition is about (3-25):(0.25-2):(0.2-0.3). In some embodiments, said composition is aqueous and said effective amount is a synergistically effective amount, wherein calcium ascorbate is present in the composition in the amount of about 3% to about 25% (weight/volume), calcium propionate is present in the composition in the amount of about 0.25% to about 2% (weight/volume), and calcium chloride is present in the composition in the amount of about 0.2% to about 0.3% (weight/volume). Effectiveness of Antibrowning Compositions The antibrowning compositions disclosed herein are effective in preventing browning in food products. In some embodiments, the compositions can reduce browning of a food product stored for a set period of time. The set period of time can vary, for example, at least about one week, at least about two weeks, at least about three weeks, at least about four weeks, at least about five weeks, at least about six weeks, at least about seven weeks, or more. In some embodiments, the set period of time is about one week, about two weeks, about three weeks, about four weeks, about one month, about five weeks, about six weeks, about seven weeks, about eight weeks, about two months, or a range between any two of these values. In some embodiments, browning of the food product treated with the antibrowning composition disclosed herein is reduced by at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90% as compared to the food product stored without the treatment of the composition. In some embodiments, the compositions prevent or inhibit food browning stored for more than 21 days. In some embodiments, the compositions prevent or inhibit food browning stored for at least about 28 days. In some embodiments, the treatment of the antibrowning composition can reduce browning on the food product by at least about two folds, at least about three folds, at least about three folds, at least about four folds, or at least about five folds, for at least about 21 days as compared to the food product untreated with the antibrowning composition. In some embodiments, the treatment of the antibrowning composition can reduce browning on the food product by at least about two folds, at least about three folds, at least about three folds, at least about four folds, or at least about five folds, for at least about 28 days as compared to the food product untreated with the antibrowning composition. Antimicrobial Properties of Antibrowning Compositions In some embodiments, the antibrowning compositions disclosed herein also can prevent microbial growth. For example, the compositions can, in some embodiments, prevent or inhibit growth of bacteria (for example, aerobic bacteria), yeasts and/or molds in a food product. In some embodiments, the growth of the bacteria, yeasts and/or molds can be prevented in the food product stored for at least about one week, at least about two weeks, at least about three weeks, at least about four weeks, at least about five weeks, at least about six weeks, at least about seven weeks, or more. In some embodiments, the antibrowning composition can prevent or inhibit growth of bacteria, yeasts and/or molds in a food product stored for about one week, about two weeks, about three weeks, about four weeks, about five weeks, about six weeks, about seven weeks, or a range between any two of these values. In some embodiments, the antibrowning compositions can prevent or inhibit growth of bacteria, yeasts and/or molds in a food product stored for at least about one month, at least about two months, at least about three months, or more. In some embodiments, the antibrowning composition prevents or inhibits growth of bacteria, yeasts and/or molds in a food stored for at least about three weeks. In some embodiments, bacterial growth of the food product treated with the antibrowning composition disclosed herein is reduced by at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, or at least about 99% as compared to the food product stored without the treatment of the composition for a set period of time. The length of the set period of time can vary, for example, about one week, about two weeks, about three weeks, about four weeks, about five weeks, about six weeks, about seven weeks, or more. In some embodiments, the aerobic bacterial growth of the food product treated with the antibrowning composition is reduced by about 99% or more over a month of storage as compared to the food product stored without treatment. In some embodiments, yeast or mold growth of the food product treated with the antibrowning composition is reduced by at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, or at least about 99% as compared to the food product stored without the treatment of the composition for a set period of time. The length of the set period of time can vary, for example, about one week, about two weeks, about three weeks, about four weeks, about five weeks, about six weeks, about seven weeks, or more. In some embodiments, the yeast growth of the food product treated with the antibrowning composition is reduced by about 90% or more over about two or three weeks of storage as compared to the food product stored without treatment. In some embodiments, the mold growth of the food product treated with the antibrowning composition is reduced by about 90% or more over about three weeks of storage as compared to the food product stored without treatment. In some embodiments, the composition disclosed herein can prevent browning and microbial spoilage of a food product to allow a shelf life of about 18 days, about 19 days, about 20 days, about 21 days, about 22 days, about 23 days, about 24 days, about 25 days, about 26 days, about 27 days, about 28 days, or longer. The antibrowning compositions disclosed herein can be used on food products stored under various conditions. For example, the food can be stored under refrigerated conditions. Refrigerated conditions include, but are not limited to 4° C., 40° F., and freezing temperatures.  

Register for free for full unlimited access to all innovation profiles on LEO

  • Discover articles from some of the world’s brightest minds, or share your thoughts and add one yourself
  • Connect with like-minded individuals and forge valuable relationships and collaboration partners
  • Innovate together, promote your expertise, or showcase your innovations